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Introduction

Introduction

Feynman: exponential classical resources for the simulation of
quantum systems.

Deutsch: 1 quantum query vs. 2 classical queries for a very special
problem

Grover: O (
√
n) quantum queries vs. O (n) classicals queries

Simon: Exponential speedup as compared to nondeterministic classical
algorithms

Shor: Applicable to cryptography

...

What's next?

Can we automatize the process?
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Architecture

Preliminaries
Bit strings and functions

Bit string: x : x = xnxn−1xn−2 . . .x1, where xi ∈ {0,1} , 1≤ i ≤ n.

Hamming weight: |x | ≡ ∑xi .

Function f : S −→ T , where S ⊆ Σn, Σ and T are �nite sets.

f is partial when S ( Σn, total when S = Σn, Boolean when
Σ = {0,1}.
f is a decision function if T = {0,1}.

Assume all functions are Boolean.

Example

Deutsch - Jozsa algorithm: T = {0,1}, S ( {0,1}n is the set of
constant and balanced bit strings.

f (x) =

{
1 if |x |= n

2
, (balanced case)

0 if |x |= 0 or 1 (constant case).
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Architecture

Preliminaries
Hilbert spaces, operators and matrices

K a �nite set, HK Hilbert Space associated with K . Ortohonormal
basis {|k〉}.
A an operator on H if A : H −→H .

A = A†: Hermitian

〈ψ|Aψ〉 ≥ 0 ∀|ψ〉 ∈H : Positive semide�nite

〈Aψ|Aφ〉= 〈ψ|φ〉 ∀|ψ〉 , |φ〉 ∈H : Unitary

A2 = A: Projection

Pz : ∑Pi = 1: Complete set of orthogonal projectors

M = {mxy : mxy = 〈ψx |ψy 〉} , Gram matrices. (Here{|ψi 〉} are an
indexed family of vectors in H . M ≥ 0)
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Architecture

Registers

input register: holds the input bit string x ∈ {0,1}n

query register: holds an integer i such that 0< i ≤ n.

ancilla: acts as a working memory, no priory conditions.

State of the memory: |β 〉= ∑βx ,i ,w |x , i ,w〉

It can be written as: |Ψ〉= ∑x∈S |x〉 |ψx〉 where |ψx〉= ∑i |i〉 |ψx ,i 〉
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Architecture

Operators

Oracle

O |x〉 |i ,w〉= (−1)xi |x〉 |i ,w〉 (1)

i = 0, null query: No phase is introduced regardless of the input.
Alternatively

Ox |i ,w〉= (−1)xi |i ,w〉 (2)

Note the di�erence between (2) and the conventional

de�nition Of |x ,w〉= (−1)f (x) |x ,w〉.

Intermediate unitaries
{
U(j)

}
Orthogonal projection operators {Pz}, ∑z Pz = 1
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Architecture

Quantum algorithm and query complexity

Input bit string is x = xnxn−1 . . .x1, corresponding oracle: Ox , t queries

Algorithm:

1. Initialize the registers to |0,0〉
2. Apply the �rst unitary U(0)

3. Alternatively apply Ox and U(j)'s t times
4. Apply the projection operators {Pz} (make a measurement) and

output the result with an error ε .

Final state: |ψfinal〉= U(t)OxU
(t−1)Ox · · ·U(1)OxU

(0) |0,0〉
Query complexity is t !
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SDP - QQC Correspondence Convex Optimization

Optimization

De�nition

Optimization is the mathematical process of selecting the best element
with regard to some criteria from the set of available alternatives[1].

It has the form:

minimize f0(x)
subject to fi (x)≤ bi , i = 1, . . . ,m.

(3)

x = (x1, . . . ,xn): optimization variable,
f0 : Rn→R: objective function,
fi : Rn→R: constraint functions,
bi : bounds.
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SDP - QQC Correspondence Convex Optimization

Optimization

Figure: A surface with a few local optima: MATLAB peaks() function.
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SDP - QQC Correspondence Convex Optimization

Linear and convex optimization

De�nition

Optimization problem is called a linear program if the objective and
constraint functions f0, . . . fm are linear,

fi (αx + βy) = αfi (x) + β fi (y) .

De�nition

More generally, an optimization problem is called convex if the objective
and constraint functions f0, . . . fm are convex,

fi (αx + βy)≤ αfi (x) + β fi (y) . (4)

In convex optimization, optimal point is unique!
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SDP - QQC Correspondence Convex Optimization

Semide�nite programming

A semide�nite program has the form:

minimize E ∗X

subject to
A ∗X = b
X � 0

(5)

E ,X : symmetric matrices,
A : Rn×n→Rn: linear operator,
b: vector,
P ∗Q : pairwise product of P and Q matrices.
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SDP - QQC Correspondence Convex Optimization

Disciplined convex programming and CVX

De�nition

Disciplined convex programming is a methodology for constructing convex
optimization problems proposed by Michael Grant, Stephen Boyd, and
Yinyu Ye[2].

DCP ruleset: a set of conventions or rules for converting a convex
optimization problem to a numerically solvable form.

A convex problem can be rejected if it violates the ruleset!

De�nition

CVX is a modeling system for constructing and solving disciplined convex
programs on MATLAB.
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SDP - QQC Correspondence Convex Optimization

A simple CVX example

Example

Least-squares problem with bounds

minimize ‖Ax−b‖2
subject to li ≤ xi ≤ ui

CVX code:

cvx_begin

variable x(n)

minimize( norm(A*x-b) )

subject to

l <= x <= u

cvx_end
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SDP - QQC Correspondence Representations

Quantum query complexity and error

Let f : S → T and ε ∈
[
0, 1

2

)
.

Algorithm computes f within error ε � Probability of output f (x) is at
least 1− ε

πx (f (x))≥ 1− ε

ε = 0 : zero error case
Complexity of QA: number t of queries.

System: QA(f , t,ε), partial Boolean function f , an integer t, a real
number ε ∈

[
0, 1

2

)
Question:

Is there a t-step QA(f , t,ε) that computes f within error ε ?
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SDP - QQC Correspondence Representations

A semide�nite program to represent QA

Semide�nite program: SDP (f , t,ε), Find S×S real symmetric positive

de�nite matrices M(t), M
(j)
i and Γz : z ∈ T satisfying [3]

n

∑
i=0

M
(0)
i = E0 (6)

n

∑
i=0

M
(j)
i =

n

∑
i=0

Ei ∗M
(j−1)
i for 1≤ j ≤ t (7)

∑
z∈T

Γz =
n

∑
i=0

Ei ∗M
(t−1)
i (8)

∆z ∗Γz = (1− ε) (9)

where Ei [x ,y ] = (−1)xi+yi , ∆z = diag
(
δf (x),z

)
, F [x ,y ] = 1−δf (x),f (y)
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SDP - QQC Correspondence Theorem

Correspondence theorem

Theorem

(Barnum, Saks and Szegedy [3]) Let f : S → T be a partial boolean
function with domain S ⊆ {0,1}n. Let t be a natural number and ε ≥ 0.
There is a t-step QA that computes f within error ε if and only if
SDP (f , t,ε) is feasible.

QA(f , t,ε)⇐⇒ SDP (f , t,ε) (10)
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SDP - QQC Correspondence Numerical Results

A recipe for quantum algorithms (Montanaro et al.[4])

1 Construct a SDP for the problem.

2 Write a CVX code to solve the SDP and run it.

3 Using the matrices M(t), M
(j)
i and Γz , derive a sequence of

intermediate states
∣∣∣ψ(j)

x

〉
of the quantum computer.

4 Using Lemma 5 of [4] to generate all the intermediate unitary
operators U(j) and the �nal projection operators Pz .
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SDP - QQC Correspondence Numerical Results

A numerical result

Function:EXACT4
2(x) =

{
1 if |x |= 2

0 otherwise

Design a 2-query quantum algorithm that evaluates EXACT4
2 with zero

error, (i.e. t = 2,ε = 0).

No ancilla, no output register. Only 5 dimensional input register.
(Montanaro et al. [4])
Initial state: |ψ〉= 1

2 ∑
4
i=1 |i〉,

Apply OxUOx ,

U =
1

2


0 1 1 1 1
1 0 1 ω ω2

1 1 0 ω2 ω

1 ω ω2 0 1
1 ω2 ω 1 0

 (11)

and ω = e2π i/3. Can we generalize it to EXACTn
n/2? Partially...
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Improvements, Applications and Results Our contribution

Error minimization: a CVX code for the problem

Task: minimize error ε(epss) for the function f , (2bits) with t = 1 query.
CVX code:

cvx_begin

variable m*0's and g*'s symmetric, variable epss

minimize( epss );

subject to

m00 + m10 + m20 == E0

g0 + g1 == E0 .* m00 + E1 .* m10 + E2 .* m20;

diag(g0) >= (1-epss)*(1-f);

diag(g1) >= (1-epss)*f;

m*0 == semidefinite(2^n); g* == semidefinite(2^n);

cvx_end

(*: 0,1,2 for m's and 0,1 for g's )
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Improvements, Applications and Results Our contribution

Generalizations

Total vs partial functions
f : {0,1}n −→ T becomes f : S −→ T , S ( {0,1}n

Ei [x ,y ] = (−1)xi+xj becomes Ei [x(k),y(k)] = (−1)x(k)i+x(k)j , k ∈ I , I
is an index set for S

Boolean vs non-Boolean functions
f : S −→ {0,1} becomes f : S −→ T
f vs (1− f ) becomes distinguishing all fi , i ∈ T from each other.
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Improvements, Applications and Results Extensions and applications to known algorithms

EXACT4
2, EXACT

6
3 and EXACT6

2,4

EXACT4
2: Trace minimization and angle manipulation leads to

Montanaro's �inspired� result.

max
(
rank

(
M

(j)
i

))
= 2 real dimensions −→ 1 complex dimensions.

EXACT6
3 and EXACT6

2,4

max
(
rank

(
M

(j)
i

))
= 6 real dimensions −→ dlog2 6e= 3 qubit ancilla

instead of 6.
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Improvements, Applications and Results Extensions and applications to known algorithms

Deutsch - Jozsa algorithm

Task:

Evaluate

f (x) =

{
1 if |x |= n

2
,

0 if |x |= 0 or 1 .

using only t = 1 calls.

Code �nds an algorithm with t = 1 for n = 2, n = 4 and n = 6.
n = 8 and beyond becomes too complex.

K�vanç Uyan�k (IzTech, KOBIT|1〉 ) Quantum Algorithms by Convex Optimization February 3rd 2017 27 / 32



Improvements, Applications and Results Extensions and applications to known algorithms

Grover's algorithm

Task:

Distinguish all fi (x), 1≤ i ≤m from each other. x is a bit string with only
one 1 and the rest is 0.
Complexity of Grover's original algorithm: π

4

√
m.

m Grover
⌈

π

4

√
m
⌉

CVX

2-4 2 2

5-6 3 2

7-8 3 3

9-13 4 3

14-25 4 4

Table: Comparison of query complexities for the Grover's problem
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Improvements, Applications and Results Extensions and applications to known algorithms

Weight decision - I [6, 7, 8]

Task:

Let ρ1 and ρ2, 0≤ ρ1 < ρ2 ≤1 be two weights. Evaluate

f (x) =

{
1 if |x |= nρ1 ,

0 if |x |= nρ2 .

We found (some, not all) algorithms that distinguish weights for n ≤ 10
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Improvements, Applications and Results Extensions and applications to known algorithms

Weight decision - II

Figure: Comparison of the results by (Choi, Braunstein 2011), (Uyan�k, Turgut
2013) and this work.
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Conclusions and Outlook

Pros and Cons

Pros

QQC - SDP correspondence is easy to implement via CVX.

Quick and exhaustive search.

Many applications: Deutsch - Jozsa, Grover and Weight decision
algorithms

Cons

Only for a small number of qubits. Complexity of the convex
optimization problem increases rapidly

Mostly useful for existence proofs or inspiration

It would have been very nice if we had a rank constraint
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Conclusions and Outlook

What to do next?

Other applications, special problems

Rank constraint, can we implement it with some other method?
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